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Exactly solvable maps of on-off intermittency
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A solvable three-dimensional deterministic map that shows on-off intermittency is derived from a coupled
mapping system. The distribution of an on-off variable, that of laminar duration, and the mean laminar duration
are analytically obtained. The map enables us to discuss the probability measure on the attractor, which also
gives the singularity spectrumf (a). The singularity of the measure caused by the on-off intermittency give
rises to a linear part of the spectrumf (a). @S1063-651X~97!10005-8#

PACS number~s!: 05.45.1b
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Recently, on-off intermittency was observed in vario
nonlinear dynamical systems@1–9#. This intermittency was
first observed numerically@1# and experimentally@7# in a
coupled system consisting of chaotic oscillators, when
synchronized state is broken. When the synchronized sta
stable, the chaotic attractor is located in a smooth invar
manifold of lower dimension than that of the full phase spa
@5#. Slightly beyond the critical point, at which the synchr
nized state becomes unstable for the perturbation out of
invariant manifold, the orbit escapes far away from the
variant manifold~burst oron state! but returns to its neigh-
borhood and stays there for a long time~laminar phase oroff
state!. This temporal evolution is repeated in an irregu
manner and called on-off intermittency.

Such behavior is characterized by the distribution of
on-off variable ~the distance from the invariant manifold!
P(x) and that of laminar durationPt(t), which is studied
theoretically by use of stochastic or random models@1,4#.
We propose here a three-dimensional deterministic m
which is derived from a coupled map. The map enables u
obtain the exact expressions ofP(x) andPt(t), which agree
with the results from the stochastic models. Further, we
discuss the probability density on the attractor and the st
ture of the phase space; and get the singularity spect
f (a), which has a singular linear part.
The starting coupled mapping system is the Poincare´ map

of coupled chaotic oscillators,

U1~ t11!5F„U1~ t !…1C$F„U2~ t !…2F„U1~ t !…%, ~1a!

U2~ t11!5F„U2~ t !…1C$F„U1~ t !…2F„U2~ t !…%, ~1b!

whereUj (t) is the state vector of thej th chaotic oscillator at
the discrete timet, F(U) is a mapping function, andC is a
coupling matrix. This map~1! always has the synchronize
solution U1(t)5U2(t). Introducing new vectors
U[(U11U2)/2 andV[(U12U2)/2, and linearizing forV
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around the synchronized solutionV(t)50, we have

U~ t11!5F„U~ t !…, ~2a!

V~ t11!5~122C!DF„U~ t !…V~ t !, ~2b!

whereDF„U(t)… is the Jacobian matrix ofF at U(t). The
synchronized solution lies in the invariant manifoldV50
and the stability in it is indicated by the largest Liapun
exponentL1 of Eq. ~2a!. The deviationuV(t)u from the in-
variant manifold is exponentially expanded or contracted
exp@l't#. We call this stability exponentl' the transverse
Liapunov exponent. When the synchronization is unsta
i.e., l'.0, the orbit is repelled from the invariant manifol
on average. However, ifl' is a small positive and the globa
structure of the system has the chaotic reinjection proc
into the neighborhood of the invariant manifold, on-off in
termittency appears. That is why the model of on-off inte
mittency needs the form~2! around the invariant manifold
and the suitable reinjection process.

Here, we takeU5(X,Y),V5(x,y) andF(U) is a baker’s
type map,

X~ t11!5G„X~ t !…55
X~ t !

a
@0<X~ t !,a#,

12X~ t !

12a
@a<X~ t !,1#,

~3a!

Y~ t11!5H„Y~ t !,X~ t !…

5H JaY~ t ! @0<X~ t !,a#,

1
2 1J~12a!Y~ t ! @a<X~ t !,1#, ~3b!
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where 0,a, 1
2,0,J,1. WhenC is a scalarc, Eq. ~2b! is

reduced to @x(t11),y(t11)#5c8$@dG„X(t)…/dX#x(t),
@]H„Y(t), X(t)…/]Y]y(t)%, wherec85122c. The variable
y vanishes, becausey(t)→0 ast→`. Since the sign ofx is
not important, we replaceuxu by x. We append a simple
reinjection process to this dynamics, and choose suitable
ues toa andc8, as the dynamics ofx has the Markov con-
dition that is mentioned later. Finally, we get

x~ t11!5g„x~ t !,X~ t !…

55
b22x ~0<x,b2,0<X,a!,

bx ~0<x,b2,a<X,1!,

b2x

b~12b!
~b2<x,b!,

x2b

12b
~b<x,1!,

~3c!

where b5@a/(12a)#1/3,c85a1/3(12a)2/3. For a,ac5
1
3,

the synchronized solutionx50 is stable to the perturbatio
along thex direction, because its transverse Liapunov ex
nent is given by l'[^l(t)&5L12 lnc85(123a)lnb,
where ^ & denotes the long time averagêh(t)&
[ limT→`(1/T)( t50

T21h(t), l(t)[ lnu]g„x(t),X(t)…/]xu. And
n

th
r
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the fluctuations of the transverse Liapunov exponent
characterized by its varianceD[^@( t50

T21l(t)2l'T#2&/2T
5 1

2^@l(t)2l'#2&5 9
2a(12a)(lnb)2. For a.ac , the orbit is

repelled fromx50 and returns tox.0 by the reinjection
process (b2<x,1), thus the on-off intermittency appear
whose time seriesx(t) and attractor are shown in Fig. 1.

First, we discuss the probability densityr(X,Y,x) on the
attractor. As the dynamics@Eqs.~3a!, ~3b!# is independent of
x and similar to the famous generalized baker’s transform
tion, r(X,Y,x) is uniform along theX direction so that
r(X,Y,x)5r(Y,x) and has the fractal structure along th
Y direction. The dynamics~3c! is independent ofY, thus we
consider onlyX and x in the discussion of on-off intermit-
tency. We defineP(x)[*dYr(Y,x) and introduce the re-
gions R1,j5@0<X,a,xj11<x,xj #, R2,j5@a<X,1,xj11

<x,xj #, Rj5R1,j1R2,j , R5@0<X,1,0<x,1#
5( j50

` Rj , where xj[bj ,( j50,1,2, . . . ). The regions
R1,j ,R2,j ,( j52,3,4, . . . ) aremapped ontoRj22 ,Rj11, re-
spectively, andRj ( j50,1) ontoR, so that the regions hav
the Markov condition. For the regionRj , we define the char-
acteristic functionEj (x), which is equal to 1 ifxPRj , and 0
otherwise. Then the dynamics~3! has the probability density
in the formP(x)5( j50

` pjEj (x) andpj satisfy the equations
pj5H l 0p01l 1p11ab2pj121~12a!b21pj21 ~ j53,4,5, . . . !

l 0p01l 1p11ab2pj12 ~ j50,1,2!
~4!
-

ra-
r

where l j5xj2xj115(12b)bj . The solution of Eq.~4! is
given by

pj5H q1rn j22 ~ j52,3,4, . . . !

q1r j ~ j50,1!, ~5!

n5
A~423a!a2a

2ab
, q52b

12ab2n2

12a
r ,

wherer 05$11ab2(12n2)%r ,r 15$11ab2n(12n)%r . @The
value of r is given by the normalized conditio
15*0

1dxP(x)5( j50
` pj l j .# The probability densityP(x) is

the distribution of the on-off variablex and shows a scaling
form P(x);xh,h5 (lnunu/ lnb) for x!1. Near the critical
point a5ac , the exponent h has the form
h5211 (3/ln2)e for e[(a2aC)/aC→0, which agrees
with the result from the stochastic modelh5211l' /D
@1#, since l'→(ln2/3)e and D→(ln2/3)22(ln2/3)e for
e→0.

Next, we discuss the laminar duration. We assign
laminar region tox,x2, and t j denotes the mean lamina
duration of the orbits starting fromRj . The dynamics~3!
leads the equations

t j5at j221~12a!t j1111 ~ j52,3,4, . . . !. ~6!
e

We solve the difference equation~6! with the boundary
condition t05t15tn50. Taking the limit n→`, we get
t j5@ j2(12f j )/(12f)#/(3a21),f5@a2A(423a)a#/ 2
(12a)52abn/(12a), wheref is one of the solutions of
the characteristic equation of Eq.~6!. As the reinjection is
uniform for 0,x,b2, the probability of finding the initial
point of a laminar motion inRj is proportional tol j . There-
fore, the mean value of the laminar duration is given by

t̄5(
j52

`

t j l jb
225

12f

~12bf!~3a21!
. ~7!

Sincef→2 1
2,b→( 12)

1/3 for e→0, the mean laminar dura
tion diverges ast̄}1/(3a21)51/e,(e→0), which also
agrees with the result of the stochastic model@4#.

We can also discuss the distribution of the laminar du
tion Pt(t). Let pj (t) be the probability that the lamina
motion lasts fort with the initial point contained inRj .
Then Eq.~3! leads to the equation

pj~t11!5apj22~t!1~12a!pj11~t! ~ j52,3,4, . . . !,
~8!

where we putp1(t)5p0(t)5dt,0 . Summing up the both
sides of Eq.~8! multiplied by st11 with respect tot, and
introducing the generating functionQj (s)[(t50

` pj (t)s
t,

we have the difference equation
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FIG. 1. ~a! Time series x(t) of the map ~3! with
e5(a2ac)/ac50.01. ~b!, ~c! Projections of the attractor with
e50.01,J50.5, which has 104 points. It has the fractal structur
along theY direction and its measure has a singularity along
x direction.
Qj~s!5asQj22~s!1~12a!sQj11~s! ~ j52,3,4, . . . !,
~9!

with the boundary conditionsQ0(s)5Q1(s)51. The char-
acteristic equation of~9! 15asj221(12a)sj has three real
solutions, j1(s).1.j2(s).0.j3(s).21 for 0,s,1.
Therefore, the solution of Eq. ~9! is Qj (s)
5(k51,2,3Akjk(s)

j . SinceQj (s) is finite for 0,s,1, A1
must be equal to 0. The relationsA25(12j3)/(j22j3),
A352(12j2)/(j22j3) are obtained from the boundar
conditions. Introducing the generating function ofPt(t) as
Q(s)[(t50

` Pt(t)s
t, we have Q(s)5( j52

` (l j /b
2)Qj (s)

5(12b)(k52,3Akjk
2/(12bjk). In the vicinity of the critical

point, the laminar duration becomes very long. Thus we
interested in the asymptotic behavior ofPt(t) for t@1. For
this purpose we expandQ(s) around Ds with
s512Ds(Ds!1), so that we have Q(s).$1
2(42b)ADs/3(12b)%, since j2.12ADs,j3.
21/21Ds/6. Using the relation A12s5(n51

` 222n11

(2n22)!sn/n!(n21)! and Stirling’s formula, we obtain the
final result

Pt~t!}t23/2. ~10!

This result also agrees with the stochastic, numerical@4# and
experimental results@8,9#.

Last, we discuss the singularity spectrumf (a) @10#. The
singular local structures of chaotic attractors have been fo
to produce remarkable linear parts inf (a) @11,12#. The at-
tractor of on-off intermittency also has the singular loc
structure on the synchronized solutionx50, which suggests
f (a) has a linear part. In this paper, we only discuss a sim
case of the attractor for the strong dissipation limitJ→0.
Then, the attractor lies in the subspaceY50 andY51/2 and
the probability density on the attractor is given b
r(X,Y,x)5$d(Y)1(12a)d(Y21/2)%( j50

` pjEj (x) and Eq.
~5!. Let us divide the subspace into the squaresSm with
measureMm and sidesk5bn5xn!1. The measureMm on
e

FIG. 2. The singularity spectrumf (a) for the attractor of the
map ~3! in the strong dissipation limit J→0 with
e50.0,0.03,0.06,0.09,0.12. Thef (a) has a liner part with the slope
s521/h for a,a0, which is tangent tof5a at a5ac51/3.
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all of these squares except for that adjoiningx50 is approxi-
mated byr(X,Y,x)k2. Then, the partition function for the
measure is given by

x~q,k![(
m

Mm
q

.$aq1~12a!q%F 1kS k(
j5n

`

pj l j D q1 (
j50

n21
l j

k2 ~pjk
2!qG

;k~21h!q211k2~q21!. ~11!

In the limit k→0, since the partition functionx(q,k) has a
scaling form x(q,k);kz(q),z(q)5(q21)Dq5min$a*q
21,2(q21)%, wherea*521h andDq is the generalized
dimension. The Legendre transformationa(q)5dz(q)/dq
and f (a)5aq2z(q) leads to the spectrumf (a)

f ~a!511
a2a*
22a*

~a*<a<2!. ~12!

It has a remarkable linear slopes521/h, which adjoins the
singular exponenta5a* at the synchronized statex50 to
a52 at x.0. Therefore, when the parametera approaches
from a.ac to the critical pointa5ac , the probability den-
sity r(X,x) has a singularity on thex50 for a,a0 where
a5a0 is given byn51 and the linear part off (a) appears
for a,a0. At the critical pointa5ac , the linear part is tan-
m

ys

D

gent to f5a and disappears fora,ac . @For a,ac , f (a) is
reduced to a single pointf5a51.# These are shown in Fig
2.

We discussed some exact results of on-off intermitten
for the deterministic dynamical system~3!. Even replacing
the map~3a! by another solvable piecewise-linear map@13#,
we expect to obtain similar results. Imposing the bound
condition p0(t)5p1(t)5pn(t)5dt,0 on Eq. ~8!, we can
discuss the escape rate from the regionxn<x,1, which
characterizes the transient motion to the stable synchron
state x50 for a,ac . For the two dimensional map, th
spectrumf (a) closely relates to the spectrumc(l) of the
local expansion ratesl @12#. We can discuss the similar re
lation for the on-off intermittency. The linear part off (a)
shows similar information toP(x). However, if the smooth
invariant manifold is curved in the full phase space, it
difficult to observe the on-off variable and we cannot g
P(x) and Pt(t). Then, it is more important to discuss th
linear part off (a). It is very interesting to explore throug
other examples whether our results are indeed germane t
case where the invariant manifold is not flat. We will co
sider this point in the next occasion. Since we can const
the Frobenius-Perron operator of the map~3a!, ~3c!, we ex-
pect to obtain the analytical results for the power spectrum
x(t) and we can also apply the thermodynamical formali
@14,15# to the present model analytically. These are plann
to be reported elsewhere.
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