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Exactly solvable maps of on-off intermittency
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A solvable three-dimensional deterministic map that shows on-off intermittency is derived from a coupled
mapping system. The distribution of an on-off variable, that of laminar duration, and the mean laminar duration
are analytically obtained. The map enables us to discuss the probability measure on the attractor, which also
gives the singularity spectruri{«). The singularity of the measure caused by the on-off intermittency give
rises to a linear part of the spectruitw). [S1063-651X97)10005-§

PACS numbds): 05.45+b

Recently, on-off intermittency was observed in variousaround the synchronized solutidM{t) =0, we have
nonlinear dynamical systemi&d—9]. This intermittency was
first observed numericallyl] and experimentally7] in a
coupled system consisting of chaotic oscillators, when the
synchronized state is broken. When the synchronized state is
stable, the chaotic attractor is located in a smooth invariant
manifold of lower dimension than that of the full phase space V(t+1)=(1—-2C)DF(U(t))V(1), (2b)
[5]. Slightly beyond the critical point, at which the synchro-
nized state becomes unstable for the perturbation out of the ) ] )
invariant manifold, the orbit escapes far away from the in-WhereDF(U(t)) is the Jacobian matrix of at U(t). The
variant manifold(burst oron staté but returns to its neigh- Synchronized solution lies in the invariant manifolt=0

; ; d the stability in it is indicated by the largest Liapunov
borhood and stays there for a long titfl@minar phase ooff an " X
statg. This temporal evolution is repeated in an irregularexponem‘&1.Of Eq. (2a). The.deV|at|on|V(t)| from the in-
manner and called on-off intermittency. variant manifold is exponentially expanded or contracted as

. . e exd A\, t]. We call this stability exponent, the transverse
Such bghawor IS qharacter|zed by the d|.str|but|on. of anl_iapunov exponent. When the synchronization is unstable,
on-off variable (the distance from the invariant manifold

. ; S . i.e., A, >0, the orbit is repelled from the invariant manifold
P(x) and that of laminar duratio®,(7), which is studied average. However, K, is a small positive and the global

theoretically by use of stochastic or random modélst.  gyrcrure of the system has the chaotic reinjection process
We propose here a three-dimensional deterministic maQniq the neighborhood of the invariant manifold, on-off in-
which is derived from a coupled map. The map enables us tférmittency appears. That is why the model of on-off inter-

obtain the exact expressions®fx) andP (), which agree  mittency needs the forn2) around the invariant manifold
with the results from the stochastic models. Further, we ca@nd the suitable reinjection process.

discuss the probability density on the attractor and the struc- Here, we takd) =(X,Y),V=(x,y) andF(U) is a baker’s
ture of the phase space; and get the singularity spectrunype map,
f(a), which has a singular linear part.

The starting coupled mapping system is the Poinoaag

U(t+1)=F(U(t)), (29

of coupled chaotic oscillators, X(t)
—_— [0=X(t)<a],
X(t+1)=GX(t)=1{ 1— 3
Uy(t+1)=F(Uy(1)+C{F(U(1) - F(U(D)}, (18 (HDZCXDZN X0 yyery,
Ua(t+1)=F(Uy(t)+C{F(Uy (1)) —F(Ux(1))}, (1b)
Y(t+1)=H(Y(t),X(t))
whereU(t) is the state vector of thgh chaotic oscillator at
the discrete time, F(U) is a mapping function, an@ is a Jay(t) [0<X(t)<a],
coupling matrix. This magl) always has the synchronized -, 3b)
solution U (t)=U,(t). Introducing new vectors Tz HIA-a)Y(t) [asX(H)<1],

U=(U,;+U,)/2 andV=(U;—U,)/2, and linearizing foV
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where 0<a< 1,0<J<1. WhenC is a scalarc, Eq. (2b) is  the fluctuations of the transverse Liapunov exponent are
reduced to [x(t+1)y(t+1)]=c'{{[dG(X(t))/dX]x(t),  characterized by its variand®@=([ =g\ (t)—\ T]?)/2T
[aH(Y(1), X(1))/aY]y(t)}, wherec’=1—2c. The variable  =3([\(t)—\,]%=3a(1—a)(Inb). Fora>a,, the orbit is

y vanishes, becausgt) —0 ast—o. Since the sign ok is  repelled fromx=0 and returns tx=0 by the reinjection
not important, we replacex| by x. We append a simple process k2<x<1), thus the on-off intermittency appears,
reinjection process to this dynamics, and choose suitable valynose time series(t) and attractor are shown in Fig. 1.

ues toa andc’, as the dynamics of has the Markov con- First, we discuss the probability densjtyX,Y,x) on the
dition that is mentioned later. Finally, we get attractor. As the dynamid€gs.(3a), (3b)] is independent of

X(t+1)=g(x(t),X(1)) x and similar to the famous generalized baker’s transforma-
tion, p(X,Y,x) is uniform along theX direction so that
(b~2x (0=x<b?0<X<a), p(X,Y,x)=p(Y,x) and has the fractal structure along the
bx (0sx<b?asX<1), Y direction. The dynamic&3c) is independent o¥, thus we
b—x consider onlyX andx in the discussion of on-off intermit-
= (b’<x<b), (30 tency. We defined?(x)=/dYp(Y,x) and introduce the re-
b(1-b) gions Ry j=[0=X<a,Xj+1=<X<Xj], Ryj=[as=X<1Xj;;
x—b b<x<1 <=x<x], Rj=Ryj+Ry;, R=[0=X<1,0=x<1]
(1-D (b=<x<1), =3[_oRj, where x;=b',(j=0,1,2...). The regions

Ryj,Rj,(1=2,3,4...) aremapped ontoR; ,,R;, 1, re-
where b=[a/(1-a)]"%c'=a"¥1-a)?®. For a<a,=3  spectively, andR;(j=0,1) ontoR, so that the regions have
the synchronized solutior=0 is stable to the perturbation the Markov condition. For the regidR; , we define the char-
along t'hex Q|rect|on, because its transverse Liapunov expocteristic functiorg;(x), which is equal to 1 ike R;, and 0
nent is given by A =(\(t))=A;—Inc’=(1-3a)Inb,  giherwise. Then the dynami¢3) has the probability density

where () derTlgtles the long time averaggh(t)) i, the formP(x)==_,p;E;(x) andp; satisfy the equations
=lim_..(LT)ST=2h(t), M(t)=In|ag(x(t),X(t))/dx|. And

_k/0p0+/1p1+ab2pj+2+(1—a)b‘1pj_1 (j=345...)
P 7 oPot 7 1p1+abpj; (j=0,1,2

4

where/j:x]-—le:(l—b)bj. The solution of Eq(4) is  We solve the difference equatiof®) with the boundary

given by condition 7= 7;=7,=0. Taking the limitn—x, we get
_ m=[—(1-¢)/(1-¢)]/(3a—1).p=[a—(4—3a)a]/ 2
q+rvi=?2 (j=2,34...) (1—a)=—abv/(1—-a), where ¢ is one of the solutions of
Pi=1 q+r. (j=0.,1) (5)  the characteristic equation of E(f). As the reinjection is
aFr 1=55 uniform for 0<x<b2, the probability of finding the initial
point of a laminar motion irR; is proportional to”; . There-
fore, the mean value of the laminar duration is given by
4—3a)a—a 1—ab?v?
2ab 1—-a __2 /b_z_ 1_¢ .
2 P T b Ea- 1) @

wherery={1+ab?(1—v?)}r,r;={1+ab’»(1—v)}r.[The
value of r is given by the normalized condition
1=[§dxP(x)=27_,p;/;.] The probability densityP(x) is
the distribution of the on-off variable and shows a sc_:z?lling agrees with the result of the stochastic mdd8

form P(x)~x”, 7= (In|»|/Inb) for x<1. Near the critical We can also discuss the distribution of the laminar dura-
point a=ac, the exponent » has the form oy p (7). Let p;(7) be the probability that the laminar

n=—1+(3/In2)e for e=(a—ac)/ac—0, which agrees mqiion lasts forr with the initial point contained iR, .
with the result from the stochastic modgl=—1+\, /D Then Eq.(3) leads to the equation

[1], since N, —(In2/3)e and D—(In2/3)>—(In2/3)e for
e—0. . =apn. — : i=

Next, we discuss the laminar duration. We assign the Pi(rt L) =apa(n+ (1=a)pjaln)  (1=234.. .)(,8)
laminar region tox<x,, and 7; denotes the mean laminar
duration of the orbits starting frorR;. The dynamics(3)  where we putp;(7)=py(7)=6,0. Summing up the both
leads the equations sides of Eq.(8) multiplied by s™* with respect tor, and

introducing the generating functio@i(S)EEfzopj(T)sT,
ri=arj_,+t(l-a)rj.1+1 (j=234...). (6) we have the difference equation

Since ¢— — 3,b—(3)* for e—0, the mean laminar dura-
tion diverges asrx1/(3a—1)=1/e,(e—0), which also
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x(t) f(ct) : € = 0.0,0.03,0.06,0.09,0.12

1 . 25
0.75 1 2t 1
0.5 ; 15 L |
0.25 ] 11 ) J
. 0.0 0.030.060.09 0.12
0 . L
7 10000 0.5 & : ' :
0 2500 5000 500 05 p 5 > o5
(a) t o

FIG. 2. The singularity spectrurf(«) for the attractor of the
1 g ' T ' map (3) in the strong dissipation limit J—0 with
€=0.0,0.03,0.06,0.09,0.12. THéa) has a liner part with the slope
s=—1/5 for a<a,, which is tangent td =« ata=a,=1/3.

08

Qj(s)=asQ_zx(s)+(1-a)sQ.i(s) (j=234...),
06 | : 9)
:4 | ‘ with the boundary condition®y(s)=Q(s)=1. The char-

acteristic equation o) 1=asé 2+ (1—a)sé has three real
solutions, £1(S)>1>§&5(s)>0>¢&5(s)>—1 for 0<s<1.
02| ] Therefore, the solution of Eq.(9) is Qj(s)
—— =Z=12AKé(8)’. Since Q(s) is finite for 0<s<1, A,
must be equal to 0. The relatios,=(1—&3)/(&,— &3),
06‘ - "'0‘2 0L4‘ 046"“';"8'""“’1 Az=—(1-&,)/(&,— &3) are obtained from the boundary
®) ‘ ' X ' ) conditions. Introducing the generating function®f(7) as
Q(S)=7_oP(7)s’, we have Q(s)=27_,(/;/b?)Q|(s)
=(1- b)Ek:mAkgﬁ/(l— b¢,). In the vicinity of the critical
1 . . - - point, the laminar duration becomes very long. Thus we are
interested in the asymptotic behavior®f(7) for 7>1. For
this purpose we expandQ(s) around As with

08y | s=1-As(As<1), so that we have Q(s)={1
' —(4—b)JAs/3(1-b)}, since ,=1—JAs &=
06 L ' ] —1/2+As/6. Using the relation y1—s=3;_,272"+1
9 : (2n—2)!s"/n!(n—1)! and Stirling’s formula, we obtain the
final result
04|
P (1)o7 32 (10

This result also agrees with the stochastic, numefigpand
experimental resultgd,9].

Last, we discuss the singularity spectrdifa) [10]. The
singular local structures of chaotic attractors have been found
to produce remarkable linear partsfife) [11,12. The at-
tractor of on-off intermittency also has the singular local
structure on the synchronized soluties 0, which suggests
f(«) has a linear part. In this paper, we only discuss a simple
case of the attractor for the strong dissipation lidhit:0.

FIG. 1. (8 Time series x(t) of the map (3) with  Then, the attractor lies in the subspate 0 andY=1/2 and
e=(a—ay)/a,=0.01. (b), (c) Projections of the attractor with the probability density on the attractor is given by
€=0.01J=0.5, which has 1D points. It has the fractal structure p(X,Y,X)={8(Y)+(1—a)s(Y—1/2)}2;" ,p;E;(x) and Eq.
along theY direction and its measure has a singularity along the(5). Let us divide the subspace into the squaBswith
x direction. measureM ,, and sidesk=b"=x,<1. The measurt ,, on
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all of these squares except for that adjoinitrg0 is approxi-
mated byp(X,Y,x)«2. Then, the partition function for the
measure is given by

x(g,0)=> MY

m

T

n—-1
={a%+(1—a)% +, S (pxd)e
=0«

1 o]
l e

~p(2tma-14 2(q-1) (11

In the limit k—0, since the partition functiog(q, «) has a
scaling form x(q,x)~«“®,£(q)=(q—1)Dq=min{a,q
—1,2(—1)}, wherea, =2+ 7 and D is the generalized
dimension. The Legendre transformatiasiq)=d{(q)/dq
andf(a)=aq—{(q) leads to the spectrum( «)

a—ay

f(a)=1+

(a,=a=<2).

12

2—a,

It has a remarkable linear sloge= — 1/, which adjoins the
singular exponentr= «, at the synchronized state=0 to

a=2 atx>0. Therefore, when the parameterpproaches
from a>a_ to the critical pointa=a., the probability den-
sity p(X,x) has a singularity on th&=0 for a<ay where

a=ag is given byv=1 and the linear part of(«) appears
for a<<a,. At the critical pointa=a_, the linear part is tan-
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gent tof = @ and disappears fa<a.. [Fora<a., f(a) is
reduced to a single poiffit=«=1.] These are shown in Fig.
2.

We discussed some exact results of on-off intermittency
for the deterministic dynamical syste(8). Even replacing
the map(3a by another solvable piecewise-linear n{dg],
we expect to obtain similar results. Imposing the boundary
condition po(7) =p1(7)=pn(7) =35, On EQ. (8), we can
discuss the escape rate from the regig=x<1, which
characterizes the transient motion to the stable synchronized
statex=0 for a<a.. For the two dimensional map, the
spectrumf(a) closely relates to the spectrugi(\) of the
local expansion rateks [12]. We can discuss the similar re-
lation for the on-off intermittency. The linear part 6f«)
shows similar information td®(x). However, if the smooth
invariant manifold is curved in the full phase space, it is
difficult to observe the on-off variable and we cannot get
P(x) and P (7). Then, it is more important to discuss the
linear part off(«). It is very interesting to explore through
other examples whether our results are indeed germane to the
case where the invariant manifold is not flat. We will con-
sider this point in the next occasion. Since we can construct
the Frobenius-Perron operator of the m&p), (3c), we ex-
pect to obtain the analytical results for the power spectrum of
x(t) and we can also apply the thermodynamical formalism
[14,15 to the present model analytically. These are planned
to be reported elsewhere.
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